If the limit does not exist or has an infinite limit, you should point it out. In addition, do not use the L'Hôpital's rule to solve the limit problem.

1. (20%) Find the following limit. (If the limit does not exist or has an infinite limit, you should point it out)
(a) $\lim _{x \rightarrow-2} \frac{x^{2}-2 x-8}{x^{2}+3 x+2}$
(b) $\lim _{x \rightarrow 0} \frac{2 \sin \left(x^{2}\right)}{1-\cos (x)}$
(c) $\lim _{x \rightarrow \infty} \frac{1}{x}\left(\sin (x)+\sin \left(\frac{2}{x}\right)\right)$
(d) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{\left|x^{2}+x\right|}$

Ans:
(a) $\lim _{x \rightarrow-2} \frac{x^{2}-2 x-8}{x^{2}+3 x+2}=\lim _{x \rightarrow-2} \frac{(x+2)(x-4)}{(x+2)(x+1)}=\lim _{x \rightarrow-2} \frac{(x-4)}{(x+1)}=6$
(b) $\lim _{x \rightarrow 0} \frac{2 \sin \left(x^{2}\right)}{1-\cos (x)}=\lim _{x \rightarrow 0} \frac{2 \sin \left(x^{2}\right)(1+\cos (x))}{(1-\cos (x))(1+\cos (x))}=\lim _{x \rightarrow 0} \frac{\left(x^{2}\right)(1+\cos (x))}{\sin ^{2} x}=$ $\lim _{x \rightarrow 0} \frac{\left(x^{2}\right) x^{2}(1+\cos (x))}{x^{2} \sin ^{2} x}=\lim _{x \rightarrow 0} \frac{\left(x^{2}\right)}{x^{2}} \frac{x}{\sin (x)} \frac{x}{\sin (x)}(1+\cos (x))=$ $2 \lim _{t \rightarrow 0} \frac{\sin (t)}{t} \lim _{x \rightarrow 0} \frac{x}{\sin (x)} \frac{x}{\sin (x)}(1+\cos (x))\left(\right.$ Let $\left.t=x^{2}\right)=4$
(c) For any $x>0,-2 \leq \sin (x)+\sin \left(\frac{2}{x}\right) \leq 2 \Rightarrow-\frac{2}{x} \leq \frac{1}{x}\left(\sin (x)+\sin \left(\frac{2}{x}\right)\right) \leq \frac{2}{x}$, In addition, $\lim _{x \rightarrow \infty}-\frac{2}{x}=0$ and $\lim _{x \rightarrow \infty} \frac{2}{x}=0$
According to Squeeze theorem, $\lim _{x \rightarrow \infty} \frac{1}{x}\left(\sin (x)+\sin \left(\frac{2}{x}\right)\right)=0$
(d) $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{1+x}-1}{\left|x^{2}+x\right|}=\lim _{x \rightarrow 0^{+}} \frac{(\sqrt{1+x}-1)(\sqrt{1+x}+1)}{\left(x^{2}+x\right)(\sqrt{1+x}+1)}=\lim _{x \rightarrow 0^{+}} \frac{x}{\left(x^{2}+x\right)(\sqrt{1+x}+1)}=$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{1}{(x+1)(\sqrt{1+x}+1)}=\frac{1}{2} \\
& \lim _{x \rightarrow 0^{-}} \frac{\sqrt{1+x}-1}{\left|x^{2}+x\right|}=\lim _{x \rightarrow 0^{-}} \frac{(\sqrt{1+x}-1)(\sqrt{1+x}+1)}{-\left(x^{2}+x\right)(\sqrt{1+x}+1)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{x}{-\left(x^{2}+x\right)(\sqrt{1+x}+1)}=\lim _{x \rightarrow 0^{-}} \frac{1}{-(x+1)(\sqrt{1+x}+1)} \\
& \quad=-\frac{1}{2}
\end{aligned}
$$

Therefore, the limit does not exist!
2. (8%)

Suppose $f(x)=\left\{\begin{array}{c}-a x^{2}-x-a \text { if } x<-1 \\ a x^{2}+b x+6 \text { if }-1 \leq x<2 \text { is a continuous function on } \\ 3 x^{2}-b x-b \text { if } x \geq 2\end{array}\right.$ $(-\infty, \infty)$. What are the values of a and b ?

Ans:
(a)

Since f is continuous at -1 , we know $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)$. Therefore, $\lim _{x \rightarrow-1^{-}}-$ $a x^{2}-x-a=\lim _{x \rightarrow-1^{+}} a x^{2}+b x+6 \rightarrow-a+1-a=a-b+6 \rightarrow 3 a-b=-5$.

On the other hand, f is continuous at 2 , we know $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$. Therefore, $\lim _{x \rightarrow 2^{-}} a x^{2}+b x+6=\lim _{x \rightarrow 2^{+}} 3 x^{2}-b x-b \rightarrow 4 a+2 b+6=12-2 b-b \rightarrow 4 a+$ $5 b=6$.

Solving the two equations we get $a=-1, b=2$
3. (8\%) Proof that $f(x)=3 x^{3}+2 x-\sin (x)$ has exactly one real root (Hint: use the mean value theorem)
Ans:
$f(1)>0, f(-1)<0$ by the intermediate value theorem, it has at least one real root between -1 and 1 .
Assume the real root is a and there is a second real root b. Then, by the mean value theorem, there is a c such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=0$. However, $f^{\prime}(x)=9 x^{2}+2-$ $\cos (x)>0$. Contradict, therefore, there is only one real root.
4. (15%) Remember that you can solve the derivative using the definition or the differentiation rule for the following question.
(a) Find the derivative of $f(x)=\sqrt{1+\cot \left(x^{2}\right)}$
(b) Given $f(x)=\frac{x^{2}}{(0-x)(1-x)(2-x) \ldots(2023-x)}$, what is the value of $f^{\prime}(0)$?
(c) Let $f(\mathrm{x})=\left\{\begin{array}{c}\cos (2 x) \text { if } x \leq 0 \\ a x \text { if } x>0\end{array}\right.$, where a is a constant. Find the value of a makes $f(x)$ differentiable at 0 .
Ans:
(a) $f(x)=\sqrt{1+\cot \left(x^{2}\right)}=\left(1+\cot \left(x^{2}\right)\right)^{\frac{1}{2}} \rightarrow f^{\prime}(x)=\frac{1}{2}(1+$ $\left.\cot \left(x^{2}\right)\right)^{\frac{-1}{2}}\left(-\csc ^{2}\left(x^{2}\right)\right) 2 x=-\frac{\csc ^{2}\left(x^{2}\right) \cdot x}{\sqrt{1+\cot \left(x^{2}\right)}}$
(b) $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{(\Delta x(1-\Delta x)(2-\Delta x))^{2}}{\Delta x}(2023-\Delta x)}{-1}=$ $\lim _{\Delta x \rightarrow 0} \frac{\Delta x \rightarrow 0}{(1-\Delta x)(2-\Delta x) \ldots(2023-\Delta x)}=\frac{-1}{2023!}$
(c) Since $f(x)$ is not continuous at 0 , there is no value of a that can make it differentiable.

5．(8%) Given the graph $x^{2}+x y+y^{2}=12$ ．
（a）Express y^{\prime} in terms of x and y
（b）Find the extrema of the graph by checking the critical number
Ans：
（a）

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}+x y+y^{2}\right)=\frac{d}{d x}(12) \\
2 x+x \frac{d y}{d x}+y+2 y \frac{d y}{d x}=0 \\
(x+2 y) \frac{d y}{d x}=-2 x-y \\
\frac{d y}{d x}=\frac{-2 x-y}{(x+2 y)}
\end{gathered}
$$

（b）The critical number occurs at $\frac{d y}{d x}=0$ or $\frac{d y}{d x}$ does not exist When $\frac{d y}{d x}=0 \rightarrow y=-2 x$ ，substitute back to the original equation we get $x=$ $\pm 2, y=\mp 4$
When $\frac{d y}{d x}$ does not exist，$x=-2 y$ ，substitute back to the original equation we get $x=\mp 4, y= \pm 2$

Therefore，the graph has maximum at $(-2,4)$ at minimum at $(2,-4)$

6．(20%) Let $f(x)=\frac{-x^{2}-4 x-7}{x+3}$
（a）Find the open intervals on which f is increasing or decreasing．Indicates the extreme values
（b）Find the open intervals on which f is concave upward or concave downward． Indicates the points of inflection
（c）Find all the asymptotes（Vertical／horizontal／Slant）
（d）Sketch the graph of $f(x)$
（e）What is the domain and range of $f(x)$ ？
Ans：Note that the original function is undefined at $x=-3$ ，therefore we should include it in the following table．
（a）
（b）$f(x)=\frac{-x^{2}-4 x-7}{x+3}, f^{\prime}(x)=\frac{-(x+1)(x+5)}{(x+3)^{2}}, f^{\prime \prime}(x)=\frac{-8}{(x+3)^{3}}$

	$(-\infty,-\mathbf{5})$	$(-\mathbf{5}, \mathbf{- 3})$	$(-\mathbf{3}, \mathbf{- 1})$	$(-\mathbf{1}, \infty)$
測試值	-6	-4	-2	0
\boldsymbol{f}^{\prime} 的正負號	-	+	+	-
$\boldsymbol{f}^{\prime \prime}$ 的正負號	+	+	-	-
結論	遞減／向上凹	遞增／向上凹	遞增／向下凹	遞減／向下凹

The critical numbers are $x=-1,-5 . f$ is increasing on $(-5,-3)$ and $(-3,-1)$ since $f^{\prime}(x)>0, f$ is decreasing on $(-\infty,-5)$ and $(-1, \infty)$ since $f^{\prime}(x)<0$ ． Local（global）maxima is $(-5,6)$ and local（global）minima is $(-1,-2)$ ．
There are no possible points of inflection．f is concave downward on $(-3, \infty)$ since $f^{\prime \prime}(x)<0, f$ is concave upward on $(-\infty,-3)$ since $f^{\prime \prime}(x)>0$ ．
(c) Since $\lim _{x \rightarrow+\infty} f(x)= \pm \infty \rightarrow$ No horizontal asymptote

Since $\lim _{x \rightarrow-3^{+}} f(x)=-\infty$ and $\lim _{x \rightarrow-3^{-}} f(x)=\infty$ vertical asymptote at $x=-3$ $\frac{-x^{2}-4 x-7}{x+3}=-x-1-\frac{4}{x+3}$ (Using long division)

$$
\lim _{x \rightarrow \pm \infty} f(x)-\left(-x-1-\frac{4}{x+3}\right)=0 \rightarrow y=-x-1 \text { is a slant asymptote }
$$

(d)

(e) Domain is entire real line except -3 . Range is $(-\infty,-2] \cup[6, \infty)$.
7. (15%) Evaluate the following expression. Remember the meaning and the definition of definite integral when solving the following question
(a) $\int 3 x-\frac{6}{x^{3}}+5 \sec (x) \tan (x) d x$
(b) $\int_{-6}^{6} 3-\left|\frac{x}{2}\right| d x$
(c) $\lim _{n \rightarrow \infty} \frac{2^{5}}{n^{5}}\left(1^{4}+2^{4}+3^{4}+\cdots+(2 n)^{4}\right)$

Ans:
(a) $\frac{3 x^{2}}{2}+\frac{3}{x^{2}}+5 \sec (x)+C$
(b) $\left.\int_{-6}^{6} 3-1 \frac{x}{2} \right\rvert\, d x$ can be considered as the area in the following graph colored with red slash

Therefore, $\int_{-6}^{6} 3-\left|\frac{x}{2}\right| d x=\frac{1}{2} 12 \times 3=18$
(c) $2^{5} \lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1^{4}+2^{4}+3^{4} \ldots+(2 n)^{4}}{n^{4}}\right)=2^{5} \lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{4}+\frac{1}{n} \sum_{i=n+1}^{2 n}\left(\frac{i}{n}\right)^{4}\right)=$ $\left.2^{5}\left(\int_{0}^{1} x^{4} d x+\int_{1}^{2} x^{4} d x\right)=2^{5} \frac{1}{5} x^{5}\right]_{0}^{2}=\frac{2^{10}}{5}$
8. (8\%) Find $\frac{d}{d x} \int_{x}^{x^{2}} \sqrt{1+t^{2}} d t$. (Hint: Let $F(x)=\int_{1}^{x} \sqrt{1+t^{2}} d t$ and use the fundamental theorem of calculus)
Ans: Let $F(x)=\int_{1}^{x} \sqrt{1+t^{2}} d t$, since $\sqrt{1+t^{2}}$ is continuous, by the fundamental theorem of calculus, $F^{\prime}(x)=\sqrt{1+x^{2}}$. Also $F(b)-F(a)=\int_{a}^{b} \sqrt{1+t^{2}} d t, a, b \in R$, therefore

$$
\begin{gathered}
\frac{d}{d x} \int_{x}^{x^{2}} \sqrt{1+t^{2}} d t=\frac{d}{d x}\left[\int_{x}^{1} \sqrt{1+t^{2}} d t+\int_{1}^{x^{2}} \sqrt{1+t^{2}} d t\right] \\
=-\sqrt{1+x^{2}}+2 x \sqrt{1+x^{4}}
\end{gathered}
$$

9. (8\%) Find $\left.\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sqrt{1+\tan (t)}}{\cos ^{2}(t)}+t^{3} \sin ^{2}(t)\right) d t$.

Ans:
Note that $t^{3} \sin ^{2}(t)$ is an odd function, so we only need to deal with the first term. Let $u=1+\tan (t) \rightarrow d u=\sec ^{2}(t) d t$

$$
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{\sqrt{1+\tan (t)}}{\cos ^{2}(t)}+t^{3} \sin ^{2}(t)\right) d t=\int_{0}^{2} \sqrt{u} d u=\frac{4 \sqrt{2}}{3}
$$

